If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2+16y+4=4
We move all terms to the left:
16y^2+16y+4-(4)=0
We add all the numbers together, and all the variables
16y^2+16y=0
a = 16; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·16·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*16}=\frac{-32}{32} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*16}=\frac{0}{32} =0 $
| 8(x+3)+7=31 | | 12x+4-8x-10=34 | | x+2/5=1/3 | | 2t+3+2t-3t=2+5 | | 6b=-9+7b | | (5x+6)+(3x)=30 | | 2(2x)=40 | | 288=(x+4+10(x-1)+4x | | |n-4|=13 | | 2^(x+3)+2^x=36 | | 3(x+2)=4+2x | | 12w-36=8w-20 | | -y+191=12 | | 6x-8=5+6x | | 4+1/7x=-2 | | 6(2x+3)=-64 | | 4s=10=3s | | (x-5)+(2x-5)+(9x+2)=2x+20 | | a=(8)(5) | | 3/7=60/x | | 287=-w+82 | | 2x+x-8=40 | | 7(3x+4)-27=64 | | 4b−11=1−2(3−b) | | 3.8x-(1,6-1,2x)=9,6+(3,7-5x) | | 4−3x=−x | | 4(t=1)=6t-1 | | 8p+5=7p+13 | | 23=9+4+c | | 1/4d=3/7 | | 0=-2x^2+4x+0 | | -5x+3.8x+1,2x=-1,6+9,6+3,7 |